Package: DRDRtest 0.1

DRDRtest: A Nonparametric Doubly Robust Test for Continuous Treatment Effect

Implement the statistical test proposed in Weng et al. (2021) to test whether the average treatment effect curve is constant and whether a discrete covariate is a significant effect modifier.

Authors:Guangwei Weng [aut, cre]

DRDRtest_0.1.tar.gz
DRDRtest_0.1.zip(r-4.5)DRDRtest_0.1.zip(r-4.4)DRDRtest_0.1.zip(r-4.3)
DRDRtest_0.1.tgz(r-4.4-any)DRDRtest_0.1.tgz(r-4.3-any)
DRDRtest_0.1.tar.gz(r-4.5-noble)DRDRtest_0.1.tar.gz(r-4.4-noble)
DRDRtest_0.1.tgz(r-4.4-emscripten)DRDRtest_0.1.tgz(r-4.3-emscripten)
DRDRtest.pdf |DRDRtest.html
DRDRtest/json (API)

# Install 'DRDRtest' in R:
install.packages('DRDRtest', repos = c('https://weng-gw.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 162 downloads 6 exports 14 dependencies

Last updated 3 years agofrom:2c26c56b78. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 08 2024
R-4.5-winOKNov 08 2024
R-4.5-linuxOKNov 08 2024
R-4.4-winOKNov 08 2024
R-4.4-macOKNov 08 2024
R-4.3-winOKNov 08 2024
R-4.3-macOKNov 08 2024

Exports:drdrtestdrdrtest_emdrdrtest_em.basedrdrtest_em.superlearnerdrdrtest.basedrdrtest.superlearner

Dependencies:bitopscaToolscodetoolscvAUCdata.tableforeachgamgplotsgtoolsiteratorsKernSmoothnnlsROCRSuperLearner