Package: DRDRtest 0.1
DRDRtest: A Nonparametric Doubly Robust Test for Continuous Treatment Effect
Implement the statistical test proposed in Weng et al. (2021) to test whether the average treatment effect curve is constant and whether a discrete covariate is a significant effect modifier.
Authors:
DRDRtest_0.1.tar.gz
DRDRtest_0.1.zip(r-4.5)DRDRtest_0.1.zip(r-4.4)DRDRtest_0.1.zip(r-4.3)
DRDRtest_0.1.tgz(r-4.4-any)DRDRtest_0.1.tgz(r-4.3-any)
DRDRtest_0.1.tar.gz(r-4.5-noble)DRDRtest_0.1.tar.gz(r-4.4-noble)
DRDRtest_0.1.tgz(r-4.4-emscripten)DRDRtest_0.1.tgz(r-4.3-emscripten)
DRDRtest.pdf |DRDRtest.html✨
DRDRtest/json (API)
# Install 'DRDRtest' in R: |
install.packages('DRDRtest', repos = c('https://weng-gw.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 3 years agofrom:2c26c56b78. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 08 2024 |
R-4.5-win | OK | Nov 08 2024 |
R-4.5-linux | OK | Nov 08 2024 |
R-4.4-win | OK | Nov 08 2024 |
R-4.4-mac | OK | Nov 08 2024 |
R-4.3-win | OK | Nov 08 2024 |
R-4.3-mac | OK | Nov 08 2024 |
Exports:drdrtestdrdrtest_emdrdrtest_em.basedrdrtest_em.superlearnerdrdrtest.basedrdrtest.superlearner
Dependencies:bitopscaToolscodetoolscvAUCdata.tableforeachgamgplotsgtoolsiteratorsKernSmoothnnlsROCRSuperLearner